研究中心主要研究功能过渡金属氧化物薄膜的合成和表征,特别是应用于多铁现象,磁电器件和能源相关应用。氧化物是最丰富的材料,将表现出新的电子特性,如金属绝缘体跃迁,巨大的磁阻和高Tc超导性。这些现象很难仅通过传统的能带结构概念来理解,因为电子相关性很强。这一领域的快速发展使研究人员能够设计和合成这些材料。研究重点是使用以下方法探索控制磁性和强相关现象与基于氧化物薄膜的电场的途径:过渡金属氧化物薄膜的生长与表征,激光分子束外延(激光-MBE)和脉冲激光沉积(PLD)技术用于具有原子精度的高结晶外延膜生长。控制应变,合成人工结构,并通过异质外延稳定亚稳相。
器件材料加工和纳米级表征,使用光刻和干法蚀刻技术的器件制造,使用扫描探针,压电响应力微拷贝,传导AFM了解纳米级材料的性质。
薄膜中强相关现象的理解和调制。薄膜中的新功能,比如用于磁电器件和自旋电子学应用的多铁性薄膜,通过铁电异质结构和人工超晶格将太阳能转换为电能,非易失性信息存储、铁电存储器、电阻开关存储器,电子传导、铁电、磁的电场控制,场效应装置。
The research center focuses on the synthesis and characterization of functional transition metal oxide films, especially for multiferrological phenomena, magnetoelectric devices and energy-related applications. Oxides are the most abundant materials and will exhibit new electronic properties such as metal insulator transitions, huge magnetoresistance and high Tc superconductivity. These phenomena are difficult to understand through the traditional concept of band structure alone, because the electrons are highly correlated. Rapid developments in this field have allowed researchers to design and synthesize these materials. Research focuses on exploring pathways to control magnetic and strongly correlated phenomena with the electric field based on oxide films using the following methods: growth and characterization of transition metal oxide films, laser molecular beam epitaxy (laser-MBE) and pulsed laser deposition (PLD) techniques for the growth of highly crystalline epitaxial films with atomic precision. Control strain, synthesize artificial structures, and stabilize metastable phases by heteroepitaxy.
Device material processing and nanoscale characterization, device fabrication using lithography and dry etching techniques, understanding the properties of nanoscale materials using scanning probes, piezoelectric response force microcopying, conducted AFM.
Understanding and modulation of strongly correlated phenomena in thin films. New functions in thin films, such as multiferrous films for magnetoelectric devices and spintronics applications, conversion of solar energy into electricity by ferroelectric heterostructures and artificial superlattices, non-volatile information storage, ferroelectric memory, resistance switching memory, electron conduction, ferroelectric, magnetic electric field control, field effect devices.