2022
07/27
相关创新主体

创新背景

目前的大多数疫苗,例如麻疹疫苗、新冠疫苗等,都需要经过多次接种才能让接种者获得最有效的预防作用。然而,多次接种无疑增加了疫苗接种的时间成本和人力成本,极大地阻碍了对 COVID-19 大流行这种爆发性疫情的防控工作。

早在2017年,Robert Langer 和 Ana Jaklenec 就在 Science 发表的论文中首次描述了他们制造这些核壳微粒的微加工新技术。这些颗粒由聚乳酸-羟基乙酸共聚物(PLGA)制成,这是一种生物相容性聚合物,已被批准用于医疗设备,如植入物、缝合线和假肢设备等。

为了制造可容纳药物或疫苗的核壳微粒,研究人员设计了“PLGA 杯子和盖子”,并制造了相应的硅模具组,并使用一个定制的、自动的分配系统来给每个“杯子”装满药物或疫苗。在杯子装满后,将盖子对准并放下到每个杯子上,然后略微加热,直到杯子和盖子融合在一起,从而将药物密封在里面。
研究团队将这种技术命名为SEAL(StampEd Assembly of polymer Layers,简称SEAL,而SEAL刚好有“密封”的意思),可以用来生产任何形状或大小的核壳微粒。

研究团队在最近发表于 Small Methods 的一篇论文中,进一步开发了简化和大规模制造这种核壳微粒的新技术。在这项最新研究中,研究团队希望了解更多关于核壳微粒如何随时间降解、核壳微粒释放内容物的影响因素,以及是否有可能增强核壳微粒中携带的药物或疫苗的稳定性。研究团队旨在从机制上优化这些微粒的动力学。

 

创新过程

2022年7月13日,麻省理工学院(MIT)的 Robert Langer、Ana Jaklenec 等在 Science 子刊 Science Advances 上发表了题为:Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles 的研究论文。

该研究开发了一种生物可降解的核壳微粒(core-shell microparticles),它能够包裹疫苗组分以提高疗效和粘附性,并可以在不同的时间点释放疫苗组分,这可以用于制造“自我增强”(self-boosting)疫苗,即一次注射就可以达到之前多次接种的效果。

通过研究核壳微粒的释放机制,研究人员发现,组成颗粒的 PLGA 聚合物会逐渐被水分解,当足够多的聚合物分解时,“盖子”就会变得非常多孔。这些小孔出现后不久,盖子就会裂开,里面的东西就会释放出来。

这意味着,如果能控制孔隙形成的时间,那么就能在特定的时间释放核壳微粒携带的药物或疫苗。

基于此,研究团队开始分析各种设计参数如何影响核壳微粒的释放时间,包括微粒的大小和形状以及用于制造它们的聚合物的组成。他们发现,微粒大小和形状对药物释放动力学几乎没有影响,相反,PLGA 微粒根据聚合物成分的差异和附着在聚合物末端的化学基团在不同时间释放其有效载荷。
也就是说,使用相应的聚合物,就可以让微粒在6个月后释放其内容物,相反,如果希望它在两天后释放,可以替换成另一种聚合物。

不仅如此,研究人员还调查了环境 pH 值的变化如何影响核壳微粒。事实上,当水分解 PLGA 聚合物时,副产品包括乳酸和乙醇酸,它们使整个环境变得更酸。这可能会破坏微粒中携带的药物,这些药物通常是对 pH 值敏感的蛋白质或核酸。
此外,为了帮助未来的核壳微粒设计,研究团队还开发了一个计算模型,可以考虑许多不同的设计参数,并预测特定微粒将如何在体内降解。

综上所述,该研究开发的核壳微粒有潜力创造出一种安全的、单次注射的、自我增强的疫苗,通过改变成分,可以设计出不同释放时间的核壳微粒。这种单一的注射方法不仅有可能提高患者的依从性,而且有可能增加对疫苗的细胞和体液免疫反应,增强疫苗效用。这种新型药物/疫苗递送方式也可用于治疗癌症等疾病。

 

创新价值

研究表明,基于 PLGA 微粒的聚合物组分会影响其内容物的释放时间,在此基础上可以设计出在不同时间点起效用的“自我增强”疫苗,从而达到只需一次注射就能具有过去多次接种的效果,为传染病疫苗和癌症疫苗的指明了新的方向。

智能推荐

  • 微生物与生化药学创新思维 | 真菌中的新型三萜合成机制

    2022-11-09

    研究解决了三萜蛋白质结构的疑惑,操纵自然生物合成机制,试图产生更多有用的分子,有助于药物开发,为制药科学开辟了一个充满可能性的全新世界。

    涉及学科
    涉及领域
    研究方向
  • 药学创新思维 | 基于DNA纳米的药物开发新技术可减少制药时间

    2022-06-29

    由哥本哈根大学的黑扎吉斯团队和南丹麦大学斯蒂芬·沃格尔副教授合作完成的,被命名为“基于DNA介导融合的单粒子组合脂质纳米容器融合”(SPARCLD)的研究解决方案,可在比针头还小的区域内,合成和分析超过4万种不同的分子,有望大幅减少制药公司的材料、能源和经济成本和时间。该方法通过使用类似肥皂泡的纳米容器,借助DNA纳米技术,可在容器中混合多种成分。

    涉及学科
    涉及领域
    研究方向
  • 药学创新思维 | 创新发现“阿哌沙班”在预防心房颤动的同时致胃出血风险最低

    2022-11-02

    在UCL研究人员领导的一项新研究中,对通常用于不规则心跳的直接口服抗凝剂(血液稀释剂)进行了大规模比较,确定了出血风险最低的药物。

    涉及学科
    涉及领域
    研究方向
  • 新型强效核糖核苷抑制剂用于治疗新冠肺炎

    2022-06-30

    美国默沙东的一项研究显示,服用新型抗新冠病毒药物莫努匹拉韦(Molnupiravir)3天后可消除新冠病毒,对SARS-CoV-2(新冠病毒)原始毒株、Delta和Omicron均有效,而接受安慰剂治疗的参与者需要5天甚至更长时间才能达到这个目标。该研究将在2022年的欧洲临床微生物学和传染病大会上发表,由默沙东制药公司的Julie Strizki博士及其同事开展。

    涉及学科
    涉及领域
    研究方向