2022
07/29
相关创新主体

创新背景

血管内手术是一种专门的微创手术,需要谨慎地地扭曲和引导细医用导线穿过身体的动脉和血管到达目标位置,以避免损坏血管壁。该程序通常需要经过多年培训的外科医生才能掌握。

 

创新过程

麻省理工学院的研究员在2019年开发出足够微小且可以通过磁力引导的机器人线,可在人脑的脉管系统等狭窄空间中工作。在此基础上,研究人员于2022年4月建立了一种远程机器人系统,通过磁铁控制可远程协助血管内干预,帮助外科医生快速远程治疗患有中风或动脉瘤的患者。
血管内干预是一种在紧急情况下治疗由血凝块引起的中风的方法,通常需要外科医生手动将一根细线引导到凝块上,清除阻塞或输送药物。这种治疗方法存在很大的局限性是,神经血管外科的医生在偏远地区非常少,很容易错过救治的黄金时段。

研究人员设想将机器人系统安装在偏远地区的较小医院,由大型医疗中心训练有素的外科医生远程指导,在关键时间窗口内及时对患者进行手术,从而挽救患者的生命并保持他们的大脑功能。

机器人系统拥有一个医疗级机械臂,手腕上附有一块磁铁。机械臂可以使用鼠标上的小操纵杆旋钮进行操纵,通过倾斜操纵杆,磁体会倾斜到磁线可以遵循的方向。鼠标上的按钮控制一组电动线性驱动器,这些驱动器会前进和缩回电线使其向前和向后移动。导线与传统的神经血管导丝一样薄而灵活,具有柔软的磁响应尖端,可跟随磁场方向并弯曲。
研究团队配有完整血管内手术使用的标准医学成像设备的手术实验室中测试了机器人系统。研究人员在实验室中安装了机械臂和一个真人大小的血管硅胶模型。他们将操纵杆与显示模型实时视频的监视器一起设置在控制室中。操作员可以从监视器中观看视频,同时使用操纵杆远程引导电线。

系统是一种透明模型,复制了大脑的复杂动脉血管,进行一个小时训练后神经外科医生就能够远程控制机器人的手臂,引导电线到达模型中的目标位置。通过操纵杆和实时成像,操作员可以调整磁体的方向并操纵机械臂以引导柔软而细的磁丝穿过动脉和血管。
团队进一步引导电线穿过复杂的动脉血管到达研究人员模拟凝块的区域。将电线引导到凝块上后,外科医生就可以使用标准的血管内干预方法将微导管沿着电线连接到凝块上,缩回电线留下导管,就可以应用到管成功去除凝块,及时治疗患者。

 

创新关键点

将机器人系统与中风治疗手术相结合,在中风开始后的关键时间窗口内为患者提供远程操作的血管内治疗。

 

创新价值

帮助患者及时接受手术治疗,有助于降低中风的致死和致残率,并让医生无需暴露于X射线就能进行手术。

 

Robotic systems empower surgeons to treat stroke remotely

Researchers at the Massachusetts Institute of Technology developed robot lines that are small enough and can be guided by magnetic force in 2019 to work in narrow spaces such as the human brain's vasculature system. On this basis, the researchers built a remote robotic system in April 2022 that remotely assists in intravascular interventions through magnet control, helping surgeons quickly and remotely treat patients with stroke or aneurysms.

Endovascular interventions make for a treatment of stroke caused by blood clots in an emergency, often requiring surgeons to manually guide a thin line to the clot, clear the blockage, or deliver medication. The big limitation of this treatment is that there are very few neurovascular surgeons in remote areas, and it is easy to miss the golden time for treatment.

The researchers envision installing robotic systems in smaller hospitals in remote areas, remotely directed by highly trained surgeons at large medical centers, to operate on patients in a timely manner within critical time windows, saving patients' lives and maintaining their brain function.

The robotic system has a medical-grade robotic arm with a magnet attached to the wrist. The robotic arm can be manipulated using the small joystick knob on the mouse, and by tilting the joystick, the magnet is tilted in the direction that the magnetic line can follow. Buttons on the mouse control a set of motorized linear drives that move forward and retract wires to move forward and backward. The wires are as thin and flexible as traditional neurovascular guide wires, with a soft magnetic response tip that follows the direction of the magnetic field and bends.

The research team tested the robotic system in a surgical laboratory equipped with standard medical imaging equipment used for intact endovascular surgery. The researchers installed robotic arms and a life-size model of vascular silicone in the lab. They set up the joystick in the control room along with a monitor that displays live video of the model. The operator can watch the video from the monitor while remotely guiding the wires using the joystick.

The system is a transparent model that reinstates the complex arterial vessels of the brain, and after an hour of training, the neurosurgeon is able to remotely control the robot's arm and guide the wires to the target location in the model. With a joystick and live imaging, the operator can adjust the orientation of the magnet and manipulate the robotic arm to guide the soft and thin magnetic filament through the arteries and blood vessels.

The team further guided the wire through complex arterial vessels to the area where the researchers simulated the clot. After directing the wire to the clot, the surgeon can use the standard intravascular intervention method to connect the microcatheter along the wire to the clot, retract the wire to leave the catheter, and then apply it to the tube to successfully remove the clot and treat the patient in time.

智能推荐

  • 肿瘤医学创新思维 | BRCA1 / 2突变可导致乳腺癌复发

    2022-11-12

    宾夕法尼亚大学艾布拉姆森癌症中心巴瑟BRCA中心的研究人员发现了可能使与BRCA1 / 2基因突变相关的乳腺癌和卵巢癌更容易复发的因素。

    涉及学科
    涉及领域
    研究方向
  • 临床医学创新思维 | 通过仿真环境交谈评估测试脑损伤对社会认知的影响

    2022-08-03

    将社会认知纳入脑损伤的后续影响,利用虚拟人模仿真实情景评估测试脑损伤对社会认知的影响。

    涉及学科
    涉及领域
    研究方向