2022
07/27
相关创新主体

创新背景

臭氧是太阳辐射使氧分子分解后,一个氧原子和另一个氧分子结合而成,通常生成于日照强烈的赤道上空。大气中的臭氧吸收了大部分对生命有破坏作用的太阳紫外线,对地球生命形成了天然的保护作用。臭氧空洞会导致照射到地面的太阳光紫外线增强,其中波长为240-329纳米的紫外线对生物细胞具有很强的杀伤作用,直接影响到生物圈和人类的安危。

 

创新过程

南极洲上空的臭氧空洞对地球环境的影响显著,在2011年和2020年春季,气候科学家发现北极上空平流层中的保护性臭氧偶尔会被破坏,导致臭氧层变薄和北半球的异常天气。极地地区会变得潮湿,而北欧、俄罗斯和中欧的春天会变得温暖干燥。

此前平流层臭氧破坏和天气异常之间是否存在联系一直有争议,因为平流层中的极地涡旋冬季形成春季衰败,也有可能导致天气异常。苏黎世联邦理工学院的Marina Friedel、Gabriel Chiodo与普林斯顿大学以及其他学校合作,共同探究其中的机制。

研究将臭氧消耗整合到两个不同的气候模型中模拟平流层臭氧破坏和天气异常的现象。往常的大多数气候模型并不考虑平流层臭氧含量的变化,但新模型计算表明,2011年和2020年观测到的北半球天气异常与北极的臭氧破坏有关。模型进行的模拟很大程度上与之前的观测数据以及用于比较目的的其他八个此类事件相吻合。但是,如果在模型中“关闭”臭氧破坏,则无法再现观测结果。

臭氧破坏需要在足够冷的环境下进行,平流层中距离地面约30至50公里的极地涡旋很强。臭氧吸收太阳发出的紫外线辐射使平流层变暖,有助于春季极地涡旋的瓦解。臭氧较少的情况下平流层会冷却,漩涡会变得更强,影响地球表面。研究人员表示,一个强大的极性涡旋会产生观察到的表面效应,臭氧北极周围的温度和环流变化有重要影响。

 

创新关键点

建立模型观察和模拟臭氧层变化,探究平流层臭氧和北半球天气异常的关系,考虑北极臭氧破坏的影响。

 

创新价值

帮助气候研究在未来创建更准确的季节性天气和气候预报,促使预测热量和温度变化更加精准快速,有助于农业和生态环境保护。

 

 Simulating stratospheric ozone changes explores weather problems in the northern hemisphere

The ozone hole over Antarctica has a significant impact on the Earth's environment, and in 2011 and spring 2020, climate scientists found that protective ozone in the stratosphere over the Arctic was occasionally destroyed, leading to thinning of the ozone layer and abnormal weather in the northern hemisphere. Polar regions can get wet, while springs in Northern, Russian, and Central Europe can become warm and dry.

There has been justice for a link between stratospheric ozone depletion and weather anomalies, as the polar vortex in the stratosphere has formed a spring decay in winter, which may also lead to weather anomalies. Marina Friedel and Gabriel Chiodo of ETH Zurich have collaborated with Princeton University and other schools to explore the mechanisms.

The study integrated ozone depletion into two different climate models to simulate stratospheric ozone destruction and weather anomalies. Most conventional climate models do not take into account changes in stratospheric ozone levels, but new model calculations show that northern hemisphere weather anomalies observed in 2011 and 2020 are associated with ozone destruction in the Arctic. The simulations conducted by the model largely coincide with previous observations and eight other such events for comparison purposes. However, if ozone destruction is "turned off" in the model, the observations cannot be reproduced.

Ozone destruction needs to be carried out in a sufficiently cold environment, and polar vortices in the stratosphere, about 30 to 50 km above the ground, are strong. Ozone warms the stratosphere by absorbing ultraviolet radiation from the sun, contributing to the disintegration of the polar vortex in spring. With less ozone, the stratosphere cools and the vortex becomes stronger, affecting the Earth's surface. The researchers say a strong polar vortex would produce observed surface effects, with changes in temperature and circulation around the ozone north pole having an important impact.

智能推荐

  • 能源化学创新思维 | 蓝藻改造可提高二氧化碳转化效率

    2022-06-28

    创新改造蓝藻和光合作用系统提高二氧化碳转化效率。

    涉及学科
    涉及领域
    研究方向
  • 植物科学创新思维 | 黑红树林的“多胚”或是植物应对气候变化的潜在优势

    2022-11-07

    在黑红树林中发现多胚对于植物面对气候变化有益,可提高它们的适应能力。

    涉及学科
    涉及领域
    研究方向
  • 地理学创新思维 | 太阳风暴或影响南北两极出现极端高温

    2022-06-29

    从太阳风暴的角度考虑两极高温出现的原因。

    涉及学科
    涉及领域
    研究方向
  • 大气科学创新思维 | 全面考虑飞机排放物,探究航空对气候的影响

    2022-08-03

    整合航空过程的所有排放物及其后续形成,从各方面探究航空对气候的影响。

    涉及学科
    涉及领域
    研究方向