2022
07/02
相关创新主体

创新背景

泛基因组(Pan-genome)是一个物种内所有基因组信息的总和,它比单一参考基因组涵盖了更多的遗传多样性。
近年来,科学家已经获得了多个作物的泛基因组。如何利用这些更为全面的基因组信息培育下一代良种,成为科学家们关心的课题。

在一个物种内,有些基因是某些个体所特有的。比如任意两个番茄所含有的基因是不完全相同的,基因不同可能导致口感不同。把一个物种所有的基因都找到,并按照顺序排列,就形成了泛基因组。而图泛基因组 (graph pangenome)是借助数学和计算机中被称为图(graph)的数据结构来展示一个物种所有的基因排列和结构。

由于泛基因组比单一参考基因组更加准确和详尽地代表了整个物种的遗传多样性,而详尽和准确的变异对下游的遗传学分析提供了完美的基础,所以借助泛基因组做研究不容易漏掉重要的基因和信息。

该论文的通讯作者黄三文表示:“此前有很多作物都获得了泛基因组图谱,如水稻、玉米、小麦、大麦、棉花、番茄、油菜等。这次我们首次获得了番茄的图泛基因组,并第一次完成了二倍体马铃薯的泛基因组。”

为了获得高质量的二倍体马铃薯泛基因组,研究团队挑选了地方栽培种、野生种、近缘野生种等44份具有代表性的二倍体马铃薯种质进行了重测序和基因注释,最终完成了第一个二倍体马铃薯泛基因组。

马铃薯泛基因组的构建和分析结果令人印象深刻。这项研究展示了基于广泛选材的“马铃薯组”和“类马铃薯组”泛基因组学的力量,能为其他作物泛基因组研究提供参考方法。

 

创新过程

《自然》在线发表了中国农业科学院深圳农业基因组研究所(以下称“基因组所”)黄三文团队有关泛基因组的两项研究成果。

在第二篇文章中,研究人员首次解析了二倍体马铃薯的泛基因组,研究了茄科茄属(Genus Solanum)的物种进化,破解了马铃薯如何结薯的分子机制,并为杂交马铃薯育种改良提供了丰富的遗传变异信息。这项研究展示了泛基因组学的力量,能为其他作物泛基因组研究提供参考方法。

 

培育“优薯”:破解结薯密码 

作为世界第三大主粮作物,传统马铃薯栽培以四倍体为主,依靠薯块无性繁殖。然而,四倍体遗传分析复杂,育种不可积累;薯块运输成本高,易感染病虫害。

为彻底打破产业发展中的障碍,2017年,在农业农村部、深圳市和中国农科院的支持下,黄三文联合国内外优势单位发起了“优薯计划”,旨在用基因组学和合成生物学指导马铃薯产业的绿色革命,即用二倍体替代四倍体,用杂交种子替代薯块,对马铃薯育种和繁殖方式进行颠覆性创新。

马铃薯种质资源丰富,自然界中70%的马铃薯是二倍体,其中大部分是野生材料,充分利用这些资源中的优异性状,有利于加快马铃薯的遗传改良。此外,马铃薯无性繁殖方式对马铃薯基因组的影响以及薯块形成的遗传演化机制还没有被充分解析。目前已发表马铃薯的基因组序列只捕获马铃薯有限的生物多样性,不足以全面了解马铃薯基因组以用于育种指导。

在构建二倍体马铃薯泛基因组的同时,研究团队还挑选了马铃薯姊妹类群——类马铃薯组(Section Etuberosum)的两个种进行基因组的组装和注释。同番茄一样,Etuberosum也是马铃薯的近缘物种,其植株外型和马铃薯非常相似,也会形成地下分枝,不同的是Etuberosum不会产生薯块。以往的分类学研究关于马铃薯、番茄和Etuberosum的系统发生关系一直存在争议。
研究团队发现马铃薯与近源物种番茄、Etuberosum之间,以及马铃薯类群内部,都存在广泛的种间杂交和不完全谱系分选现象,说明马铃薯类群经历了复杂的演化历史。

利用高质量的泛基因组,他们发现相比于番茄和Etuberosum,马铃薯的抗病基因拷贝数明显扩张。研究人员推测,这是由于马铃薯依赖于生长在土壤中的薯块进行无性繁殖,其相比于种子更容易受到病原菌的侵染。马铃薯的无性繁殖可能促使了抗病基因数量的扩张以应对病原菌对薯块的侵染。

马铃薯类群、番茄类群和Etuberosum类群是进化距离很近的近缘物种,但只有马铃薯演化出了薯块这一重要的生物学性状。Etuberosum和马铃薯都会产生地下分枝,但Etuberosum的地下分枝向上生长发育成新的植株;而马铃薯的匍匐茎向下生长,并在顶端膨大形成薯块;番茄不含有地下分枝,也不形成薯块。因此研究人员推测Etuberosum是薯块形成的过渡态。
通过对上述三者的多组学比较分析,该团队鉴定到一个可能在薯块发育过程中发挥关键作用的TCP转录因子。

进一步地,他们在二倍体马铃薯中创制了上述转录因子的基因纯合缺失突变体。表型观察发现,相比于野生型,突变体匍匐茎顶端无法正常膨大形成薯块,转而发育成了侧枝。研究人员认为这证明该基因在薯块发育的起始时期发挥关键作用。该基因被命名为薯块身份基因。

进一步发现栽培马铃薯内部共线性缺失现象,这说明栽培马铃薯材料中广泛的遗传多样性。在对马铃薯进行杂交育种时,必须谨慎考虑这些共线性缺失片段,以及可能导致共线性缺失的大结构变异带来的连锁累赘等影响。他们发现,马铃薯基因组中存在很多大的结构变异,而马铃薯的无性繁殖方式很难将这些结构变异清除出去的。

其中,马铃薯3号染色体的倒位事件与薯块中控制类胡萝卜素积累的基因紧密连锁,在自交后代中该倒位区域重组率显著下降。这意味着在育种中选择黄肉薯块这个重要的营养性状,就选择了该倒位区间的所有基因,这可能带来严重的连锁累赘现象。
该研究将为马铃薯研究供丰富的基因组大数据支持,加深对马铃薯重要生物学性状的理解,有力地推动杂交马铃薯育种,并加速马铃薯作为重要主粮作物的育种进程。
 

智能推荐

  • AI+动物检疫学 | 利用机器学习全新揭示禽流感爆发的良好预测指标

    2022-11-24

    创新使用机器学习研究影响家禽养殖场的禽流感爆发的因素,创建模型证明野生鸟类分布是家禽养殖场禽流感暴发的良好预测指标。

    涉及学科
    涉及领域
    研究方向
  • 一种隔离血红素的植物肽促进共生细菌的铁摄取

    2022-08-14

    麻省理工的一项研究发现了豆科植物细胞中具有一种会吸收所有可用的血红素的多肽——NCR247。这种多肽被豆科植物用来控制固氮细菌,同时它也可能对治疗血液中血红素过多的患者有益处。清除血液中的游离血红素有助于治疗由需要血红素生存的细菌或寄生虫引起的疾病,如牙龈杆菌(牙周病)或弓形虫病,或向血液中释放过多血红素的镰状细胞病或败血症等疾病。此外,这项研究也表明了,植物和微生物相互作用的基础研究也有可能转化为治疗应用。

    涉及学科
    涉及领域
    研究方向
  • 采用OsDREB1C水稻基因对多个生理过程的聚合调控实现“减氮高产”

    2022-07-25

    中国农业科学院作物科学研究所周文彬团队以118个转录因子为切入点,逐一分析它们在水稻中光照条件和低氮条件的诱导表达情况,鉴定到一个同时受光和低氮调控的转录因子——OsDREB1C。该基因可同时调控多个重要生理过程,打破长期存在于农业生产中“高产”与“早熟”之间的矛盾;同时,OsDREB1C基因在不同作物中的保守性功能使其具有巨大的应用前景与发展潜力,对推动农业可持续集约化生产具有重要意义。

    涉及学科
    涉及领域
    研究方向
  • 生命科学 | 国际研究人员合作绘制燕麦基因组图谱

    2022-09-01

    研究为开发具有更高产量和更好的气候适应能力,改善营养特性和增强可持续性的燕麦品种奠定了坚实的基础,燕麦基因组图谱还可以更快地将知识从其他作物转移到新的和改良的燕麦品种。

    涉及学科
    涉及领域
    研究方向