2022
08/17
相关创新主体

创新背景

光的速度对信息的快速交换至关重要,但当光在材料中快速传播时,它与原子和分子相互作用和激发的机会会变得非常小。如果科学家们能够阻止光粒子或光子,这将为一系列新技术的应用打开大门。

 

创新过程

斯坦福大学材料科学与工程副教授詹妮弗·迪奥尼(Jennifer Dionne)实验室的研究人员将超薄硅芯片构造成纳米级别的棒,以共振捕获光,然后释放或改变光的方向。这些“高质量因子”或“高品质”谐振器可能导致操纵和使用光的新方法,包括量子计算、虚拟现实和增强现实的新应用;光学无线;甚至是SARS-CoV-2等病毒的检测。在他们能够操纵光之前,需要制造谐振器,这带来了许多挑战。

该装置的核心部件是一层极薄的硅层,它能非常有效地捕获光线,并且对科学家想要控制的近红外光谱吸收率很低。硅位于透明材料晶圆上(在这个例子中是蓝宝石),研究人员用电子显微镜“笔”在晶圆上蚀刻纳米天线图案。图案必须画得尽可能平滑,因为这些天线就像回声室中的墙壁一样,不完美的地方会抑制光捕获能力。

图案设计在制备高品质纳米结构中起着关键作用。在电脑上可以画出任何给定几何形状的超光滑线条和块,但制作是有限的。最终,研究人员必须找到一种设计,既能提供良好的捕光性能,又能在现有制造方法的范围内。

该设备显示,所谓的质量因数高达2500,这是两个数量级(或100倍)高于任何类似的设备以前的水平。质量因子是描述共振行为的一种度量,在这种情况下,它与光的寿命成正比。迪翁的实验室正致力于将这种技术应用于检测COVID-19抗原(触发免疫反应的分子)和抗体(免疫系统响应时产生的蛋白质)。

虽然大流行激发了迪翁对病毒检测的兴趣,但她也对其他应用感到兴奋,比如激光雷达(又称光探测和测距),这是一种基于激光的距离测量技术,经常用于自动驾驶汽车。

这项创新在量子科学中也很有用。例如,分裂光子以产生纠缠光子,即使在距离很远的情况下也能在量子水平上保持连接,这通常需要使用昂贵的大精密抛光晶体的大型桌面光学实验。

 

创新价值

这项新技术将提供医生和临床医生习惯看到的光学读数。但由于强光分子相互作用,还有机会检测单个病毒或大量抗体的极低浓度。高质量纳米谐振器的设计还允许每个天线独立操作,以同时检测不同类型的抗体。

 

创新关键点

研究关键是制造谐振器,该装置的核心部件是一层极薄的硅层,它能非常有效地捕获光线,并且对科学家想要控制的近红外光谱吸收率很低。

 

Making ultra-thin silicon nanoantennas to slow and control light

Researchers in the laboratory of Jennifer Dionne, an associate professor of materials science and engineering at Stanford, constructed ultra-thin silicon chips into nanoscale rods that capture light in resonance and then release or redirect it. These "high quality factors" or "high quality" resonators could lead to new ways of manipulating and using light, including new applications in quantum computing, virtual reality and augmented reality; Optical wireless; Even for viruses like SARS-CoV-2. Before they could manipulate light, resonators needed to be made, which presented many challenges.
The core component of the device is an extremely thin layer of silicon that traps light very efficiently and has a low absorption rate into the near-infrared spectrum that scientists want to control. The silicon sits on a wafer of transparent material (sapphire, in this case), on which the researchers etched nanoantenna patterns using an electron microscope "pen." The pattern must be drawn as smoothly as possible, because these antennas are like walls in an echo chamber, and imperfections can inhibit light capture.
Pattern design plays a key role in the fabrication of high quality nanostructures. Ultra-smooth lines and blocks of any given geometry can be drawn on a computer, but production is limited. Ultimately, researchers will have to find a design that provides good light harvesting while remaining within the range of existing manufacturing methods.
By tinkering with the design, Dion and Lawrence describe it as an important platform technology with numerous practical applications.
The device shows a so-called mass factor of up to 2500, which is two orders of magnitude (or 100 times) higher than any similar device has ever had before. The quality factor is a measure that describes the resonance behavior, in this case it is proportional to the lifetime of light. Dion's lab is working on applying the technology to detect COVID-19 antigens (molecules that trigger immune responses) and antibodies (proteins produced by the immune system in response).
While the pandemic has sparked Dion's interest in virus detection, she is also excited about other applications, such as Lidar (also known as light detection and ranging), a laser-based distance measurement technology often used in self-driving cars.
This innovation is also useful in quantum science. Splitting photons to produce entangled photons, for example, remains connected at the quantum level even over great distances, often requiring large tabletop optics experiments using expensive large precision polished crystals.

智能推荐

  • 临床医学创新 | 开发新型“纳米孔封锁传感器”可帮助检测早期癌症

    2022-09-29

    来自新南威尔士大学的研究人员经创造了首个“纳米孔封锁传感器”的早期版本,它可以在快速的单分子水平上分析疾病生物标志物。

    涉及学科
    涉及领域
    研究方向
  • 利用”量子纳米"金刚石可有助于更早地发现疾病

    2022-08-02

    伦敦大学学院i-sense McKendry小组的研究人员领导的一项研究表明,纳米钻石的量子传感能力可以用于提高纸质诊断测试的灵敏度,有可能使艾滋病等疾病的早期检测成为可能。

    涉及学科
    涉及领域
    研究方向
  • 电子新材料 | 创新开发超薄电子材料可使触摸响应灵敏100倍

    2022-09-28

    新南威尔士大学化学工程师帮助开发了一种超薄和超灵活的电子材料,能够像报纸一样打印和推出,可用于未来的触摸屏。

    涉及学科
    涉及领域
    研究方向
  • 机器人+口腔医学 | 利用可变形微型机器人可以对牙齿进行自动化治疗

    2022-10-09

    在一项概念验证研究中,来自牙科医学院和工程与应用科学学院的研究人员表明,一种免提系统可以有效地自动化治疗和清除导致蛀牙的细菌和牙菌斑。

    涉及学科
    涉及领域
    研究方向