创新背景
小胶质细胞是中枢神经系统中最主要的常住免疫细胞,遍布整个中枢神经系统,其数量约占中枢神经系统中所有细胞的10-15%。作为存在于神经系统中的一类特殊的巨噬细胞,在很长一段时间内,小胶质细胞被认为主要承担清除细胞碎片等废物的功能。
近年来的研究表明,小胶质细胞不仅仅是神经系统的“清道夫”,更是维持中枢神经系统稳态的关键细胞。在正常生理状态下,小胶质细胞对环境进行持续的免疫监视,并在识别到免疫刺激时进行快速应答。除了执行免疫功能之外,小胶质细胞也通过突触修剪、神经元兴奋性调节等方式,参与调控神经环路的发育和可塑性。考虑到小胶质细胞的重要功能,几乎所有中枢神经系统疾病的发生和发展均涉及小胶质细胞。
人类遗传学研究发现,绝大多数神经退行性疾病的风险基因都在小胶质细胞中特异性表达或高表达。影响小胶质细胞吞噬、激活或免疫调节功能的基因突变也导致严重的中枢神经系统病变。因此,小胶质细胞也被认为是治疗中枢神经系统疾病的重要靶点。
虽然小胶质细胞逐渐成为神经科学研究领域的热点,但目前对小胶质细胞功能的理解还不深入,针对小胶质细胞开展研究也相对而言比较困难。一个最主要的技术难点是缺乏高效的手段对小胶质细胞进行转基因操作。
以往研究主要通过构建转基因小鼠将外源基因或遗传修饰导入小胶质细胞。但这种手段费时费力,并且不能作为治疗策略进行转化应用。近年来,重组病毒载体,尤其是重组腺相关病毒(rAAV)载体,逐渐成为神经科学研究领域最为重要的研究工具。通过rAAV载体将外源基因(如光敏感蛋白、荧光探针、CRISPR组分等)表达至细胞内,研究人员能够高效的对目标细胞进行标记和操控。这一策略已经被广泛运用于对神经元和神经环路的研究,极大地推动了相关领域的发展。由于相对较高的安全性,rAAV也是现阶段最为常用的基因治疗载体之一。然而,现有的病毒载体均无法实现对小胶质细胞的有效侵染。
创新过程
2022年7月25日,北京生命科学研究所/北京脑科学与类脑研究中心罗敏敏实验室在 Nature 子刊 Nature Methods 在线发表了题为:Directed evolution of adeno-associated virus for efficient gene delivery to microglia 的研究论文。
该研究通过定向进化策略,开发了一系列能够在体内和体外高效侵染小胶质细胞的新型rAAV载体,实现对小胶质细胞的标记、在体观测和基因编辑。
在最新这篇论文中,研究团队针对野生血清型AAV9的衣壳蛋白进行改造。AAV由衣壳蛋白和单链DNA基因组所构成,其侵染特性由衣壳蛋白所决定。研究团队将7个随机氨基酸组成的短肽插入至AAV衣壳蛋白的特定位置中,并利用这些突变衣壳蛋白包装制备AAV突变病毒文库。文库中不同的rAAV病毒颗粒表面展示有不同序列的短肽。
研究团队首先在体外培养的小鼠小胶质细胞中对该文库进行两轮筛选,鉴定出两个衣壳蛋白(AAV-cMG.WPP和AAV-cMG.QRP)能够在一定程度上提高rAAV病毒对体外培养的小鼠小胶质细胞的侵染效率。以此为基础,研究团队针对AAV-cMG.QRP的插入肽段及其在衣壳蛋白插入位点的相邻氨基酸进行突变筛选,成功得到了高效侵染体外培养小胶质细胞的AAV-cMG衣壳蛋白。通过RNA测序,研究人员确认AAV-cMG侵染体外培养小胶质细胞并不导致小胶质细胞的激活。
然而,体外筛选得到的这些AAV突变衣壳蛋白并不足以在小鼠脑内介导高效的小胶质细胞基因递送。研究人员进一步在AAV-cMG.WPP基础之上构建新的AAV突变文库,并在小胶质细胞特异的Cx3cr1-CreER转基因小鼠脑内进行针对性体内筛选,成功鉴定得到两个衣壳蛋白,AAV-MG1.1和AAV-MG1.2,能够在体内高效侵染小胶质细胞。同样的,通过单细胞测序,研究人员确认AAV-MG1.1和AAV-MG1.2介导的侵染并不导致脑内小胶质细胞的激活。
这些新型rAAV病毒载体能够将众多基因编码的工具蛋白直接递送入小胶质细胞,无需针对每一个工具蛋白重新构建新的转基因小鼠品系,从而大大提高了研究的效率。更重要的是,这些新型rAAV病毒载体使得对小胶质细胞进行快速基因编辑成为可能。
研究团队利用AAV-MG1.2结合Cre-LoxP系统,在小鼠脑内小胶质细胞中特异表达钙离子荧光探针jGCaMP8s和北京大学李毓龙实验室最新开发的ATP荧光探针GRABATP1.0,并运用在体双光子成像观察腹腔注射LPS后小胶质细胞胞体处钙离子和ATP分子的动态变化。研究团队同样利用AAV-MG1.2结合CRISPR-Cas技术,实现小胶质细胞高效在体基因敲除。
创新价值
该研究成功开发了两类分别适用于体外侵染培养小胶质细胞和体内侵染内源性小胶质细胞的新型rAAV载体,拓展了各种研究手段被用于小胶质细胞研究的可行性,并有希望应用于小胶质细胞基因疗法的开发。
智能推荐
AI+医学 | 多器官芯片提供疾病建模新技术
2022-06-29芯片仿人体器官组织工作,深度探究人体工作原理及治疗疾病的过程和效果。
涉及学科涉及领域研究方向创新使用面包酵母制造抗癌药物
2022-09-05从自然界中已知的装配线入微生物细胞,并允许细胞产生一些这些复杂的化学物质,使用生物技术合成药物成分,有助于开发对人类健康至关重要的复杂化学的新方法。
涉及学科涉及领域研究方向前沿医学 | 创新通过血液检查检测唐氏综合症患者是否患阿尔茨海默病
2022-09-01基于唐氏综合症患者染色体的不同,探究血液生物标志物P-tau217的作用,进而使用血液检查来测定唐氏综合症患者是否患阿尔茨海默症。
涉及学科涉及领域研究方向前沿医学 | 通过分析交通事故数据帮助预测车祸受害者的脑损伤风险
2022-08-31帝国理工大学的研究人员在这项研究者确定了速度、方向和头部保护水平如何预测道路交通碰撞(RTC)后的脑损伤。这些发现为自动识别最可能导致脑外伤的碰撞提供了数据。这可以为现有的碰撞通知系统提供基础,以便更好地预测严重伤害的风险,并向紧急服务部门通报。这可以帮助急救人员确保患者迅速得到最适当的治疗。
涉及学科涉及领域研究方向