2022
06/29
相关创新主体

创新背景

汽油在现在的生产生活中利用得极为广泛,近几年来一直有科学家致力于研究将其他气体或资源转化为汽油,提高能源利用率。同时,全球气候变暖需要科学家研究以二氧化碳为首的温室气体的优化处理,减少排放,将二氧化碳转化为汽油有助于环境保护和能源利用。

 

创新过程

2022年2月,斯坦福大学化学工程师马泰奥·卡涅罗带领团队进行了7年的研究成果论文在《美国国家科学院院刊》上发表。论文中表示他们发明了一种由钌元素为主要要素的新催化剂,可以帮助二氧化碳转化为其他化学物。

转化过程是通过增加长链碳氢化合物的产量,把二氧化碳转化为丙烷、丁烷等碳和氢长链组成的碳氢化合物燃料。新催化剂在相同条件下,产生的最长碳氢化合物是最大压力下标准催化剂产量的1000倍。经过不断改进和完善,在实验反应中产生新突破——施予更大的压力,新催化剂可以帮助二氧化碳生产出汽油的长链碳氢化合物,促进二氧化碳转化为汽油因子。

钌元素是表面涂有薄塑料的一种铂族稀有过渡金属。新催化剂不仅和以往的催化剂一样加速化学反应,而且消耗速度极地,在化学过程中基本不会耗尽。比起钯和铂等高质量催化剂,钌的成本更低。  

汽油在室温下是液态的,比甲烷、乙烷和丙烷等短链气体更容易储存和处理。研究团队团队设想把二氧化碳收集起来,转化为燃料再次燃烧,由此产生的二氧化碳重新开始新的循环。利用一个碳中和循环来制造液体燃料。

IMG_256

新催化剂反应性的提高关键在于钌上的多孔塑料层。未涂层的催化剂表面覆盖的众多氢,限制了碳与碳之间结合的能力,只会产生甲烷,无法产生长链碳氢化合物。多孔聚合物可以控制碳氢比,帮助从相同的反应中产生更长的碳链。

卡涅罗表示,用长链碳氢化合物捕获碳的一种创新用途,但并不完美。研究将探索其他将二氧化碳转化为其他有价值化学产物的催化剂和类似工艺,例如用于制造塑料的烯烃、甲醇和乙醇。把二氧化碳转化为可储存、可利用的化合物产品,对于环境保护和资源利用意义重大。

 

创新关键点

利用钌元素制成新型催化剂,生产长链碳氢化合物促进二氧化碳转化为可利用化学产品。

 

The new catalyst is expected to improve the efficiency of carbon dioxide into gasoline

In February 2022, a seven-year research paper led by Stanford University chemical engineer Matteo Caniero was published in the Proceedings of the National Academy of Sciences. According to the paper, they have invented a new catalyst made of ruthenium as the main element, which can help convert carbon dioxide into other chemicals.
The conversion process converts carbon dioxide into hydrocarbon fuels composed of long chains of carbon and hydrogen, such as propane and butane, by increasing the production of long-chain hydrocarbons. Under the same conditions, the new catalyst produced 1,000 times the longest hydrocarbon yield than the standard catalyst at maximum pressure. After continuous improvement and perfection, new breakthroughs have been made in the experimental reaction - by applying more pressure, the new catalyst can help carbon dioxide to produce long-chain hydrocarbons of gasoline, and promote the conversion of carbon dioxide into gasoline factors.
Ruthenium is a rare platinum-group transition metal coated with thin plastic. The new catalyst not only accelerates the chemical reaction like the previous catalyst, but also consumes extremely fast, and it is basically not used up in the chemical process. Ruthenium is less expensive than high-quality catalysts such as palladium and platinum.
Gasoline is liquid at room temperature and easier to store and handle than short-chain gases like methane, ethane and propane. The research team envisions capturing the carbon dioxide, turning it into fuel and burning it again, and the resulting carbon dioxide starts a new cycle again. Utilize a carbon neutral cycle to make liquid fuels.
The key to the improved reactivity of the new catalyst is the porous plastic layer on the ruthenium. The large amount of hydrogen covered on the uncoated catalyst surface limits the ability of carbon to bond with carbon and only produces methane, not long-chain hydrocarbons. Porous polymers can control the carbon-to-hydrogen ratio, helping to generate longer carbon chains from the same reaction.
An innovative, but not perfect, use of carbon capture with long-chain hydrocarbons, Caniero said. Research will explore other catalysts and similar processes that convert carbon dioxide into other valuable chemical products, such as olefins, methanol and ethanol used to make plastics. Converting carbon dioxide into storable and usable compound products is of great significance for environmental protection and resource utilization.

智能推荐

  • 新能源 | 利用铁、碳和氢创新融合帮助氢燃料电池降低成本

    2022-06-29

    利用已有廉价易得元素进行分离式单原子金属转化合成生产新型化学催化剂。

    涉及学科
    涉及领域
    研究方向
  • 化学合成非织造布抗菌纺织品

    2022-06-29

    创新使用射频气体放电等离子体技术开发新技术,改善非织造布材料性能,增加其抗菌作用。

    涉及学科
    涉及领域
    研究方向
  • 微藻分泌物保存核废料的可能

    2022-06-29

    研究微藻分泌物以及其他自然形成物质,挖掘其对核废料封存处理的可能性影响。

    涉及学科
    涉及领域
    研究方向
  • 通过随机共聚物序列发现新聚合物中间相结构

    2022-08-05

    通过随机共聚物序列发现双层折叠层状中间相。

    涉及学科
    涉及领域
    研究方向